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Falling clouds of particles in viscous fluids
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We have investigated both experimentally and numerically the time evolution of
clouds of particles settling under the action of gravity in an otherwise pure liquid at
low Reynolds numbers. We have found that an initially spherical cloud containing
enough particles is unstable. It slowly evolves into a torus which breaks up into second-
ary droplets which deform into tori themselves in a repeating cascade. Owing to the
fluctuations in velocity of the interacting particles, some particles escape from the
cloud toroidal circulation and form a vertical tail. This creates a particle deficit near
the vertical axis of the cloud and helps in producing the torus which eventually
expands. The rate at which particles leak from the cloud is influenced by this change
of shape. The evolution toward the torus shape and the subsequent evolution is a
robust feature. The nature of the breakup of the torus is found to be intrinsic to
the flow created by the particles when the torus aspect ratio reaches a critical value.
Movies are available with the online version of the paper.

1. Introduction
Dispersions of particles in large volumes of liquid are of interest for many industrial

applications or natural phenomena. When the particles are small or the liquid
highly viscous, interactions between particles are governed by hydrodynamic forces,
provided that surface forces, e.g. van der Waals forces, and Brownian motion are
negligible. These hydrodynamic interactions lead to complex chaotic displacements
of the particles despite the reversiblity of the Stokes equations. In this paper, we
consider the motion under gravity of particles initially distributed in a viscous liquid
with uniform concentration within a spherical boundary, namely the sedimentation
of a spherical cloud of particles in an otherwise pure liquid at low Reynolds numbers,
and enquire about its following time evolution.

During the settling of the cloud, a striking collective motion of the particle arises and
an observed outcome of this dynamic is that the cloud remains a cohesive entity for
long times, maintaining a sharp boundary between its particle-filled interior and the
clear fluid outside. The cloud has been often regarded as an effective medium of excess
mass and the flow system related to that of the sedimentation of a spherical drop of
heavy fluid in an otherwise lighter fluid solved by Hadamard (1911) and Rybczyński
(1911). However, the fluctuations in particle velocity causes some particles to cross
the cloud boundary and be carried by the outside flow into a vertical tail emanating
from the rear of the cloud. Moreover, the cloud has also been reported to undergo a
complex shape evolution. It is indeed possible to observe that the cloud evolves into
a torus that becomes unstable and breaks up into secondary droplets which deform
into tori themselves in a repeating cascade.
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While a large amount of work has been devoted to liquid drops and fluid rings,
see e.g. the review of previous studies by Machu et al. (2001), suspension drops have
received less attention. Brinkman (1947) focused on the drag force applied on the
cloud without any change of configuration. Adachi, Kiriyama & Yoshioka (1978)
computed and measured the settling velocity of an initially spherical cloud. They
observed that the cloud evolved into a torus and broke up into smaller fragments,
(see also Nicolas 2002). The breakup was attributed to inertia, although, in the
experiments, the Reynolds number was smaller than unity. Nitsche & Batchelor
(1997) numerically investigated the evolution of a cloud containing a small number
of point particles (less than 320). They focused on the dispersive leakage of the
particles in the tail and proposed a correlation for the rate of particle leakage
from the cloud. The cloud was found to maintain essentially constant form until it
disintegrated owing to the constant loss of particles. In experiments and simulations
using a larger number of point particles, Machu et al. (2001) exposed the crucial role
of the initial shape on the subsequent evolution. Large initial perturbations modelling
the experimental injection process (as it is difficult to produce a perfectly spherical
cloud in the laboratory) caused the cloud to destabilize into a torus which eventually
broke up. Bosse et al. (2005) investigated numerically the destabilization into a torus
and subsequent breakup at finite Reynolds numbers. Fluctuations in the particle
distribution were also recognized as being a source of perturbations at the origin of
the instability leading to breakup. Both Machu et al. (2001) and Bosse et al. (2005)
confirmed the finding of Nitsche & Batchelor (1997) that the initially spherical cloud
retained a roughly spherical shape while settling at low Reynolds numbers.

In summary, the torus formation and subsequent breakup has been attributed to
either inertial effects or to large initial deviation to the spherical shape, the breakup
itself being caused by an instability of the torus similar to the Rayleigh–Taylor
instability. The objective of the present work is to revisit and clarify these issues. By
performing simple simulations using point-particles (see § 2) and experiments (see § 3),
we observe that, contrary to what has been found previously, an initially spherical
cloud containing enough particles is unstable at low Reynolds numbers (strictly zero
Reynolds number in the simulations). The general evolution of the cloud is depicted
in § 4 and the systematic evolution toward a torus shape is characterized in § 5.
As clouds undergo significant deformations, the correlation proposed by Nitsche &
Batchelor (1997) is no longer sufficient to explain the rate of particle leakage. We
provide a new scaling law for the leakage in § 6. The influence of the initial shape on
the subsequent evolution is investigated in § 7. The nature of the breakup of the torus
is examined in § 8 and is found to be intrinsic to the flow created by the particles
when the torus aspect-ratio reaches a critical value. Finally, the results are discussed
in § 9.

2. Numerical simulation
We consider a cloud comprising N0 particles settling under gravity in an unbounded

fluid of viscosity µ at rest at infinity. We assume that the generated fluid flow satisfies
the Stokes equations. We adopt the simplest model in which particles are represented
by identical point forces F = F eg as it contains the minimum physics needed to
describe the interactions between particles. Therefore, the velocity ṙ i of a point
particle located at r i , i = 1, . . . , N0, is equal to the sum of its terminal velocity
U0 when in isolation and of the fluid velocity disturbances (also called Stokeslets)
generated by all the other point particles, see e.g. Nitsche & Batchelor (1997) and
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Machu et al. (2001),

ṙ i = U0 + F ·
∑
j �=i

T(r ij), (2.1)

where r ij ≡ r i − rj and T is the Oseen–Burgers tensor,

T(r) =
1

8πµr

(
I +

r ⊗ r
r2

)
, (2.2)

with the unit tensor I and r = |r|, see e.g. Kim & Karrila (1991).
It is advantageous to eliminate U0 in (2.1) by choosing the frame of reference

moving with the terminal settling velocity of an isolated particle. As the particles are
identical, this does not affect their relative motions and thus their dynamics. We have
the choice of length scale and time scale and since we do not know a priori what would
be the correct scalings, we decide to make all the values dimensionless by scaling the
length and the velocity with the radius R0 and the velocity V0 = N0F/5πµR0 of the
initially spherical cloud, respectively, see Ekiel-Jeżewska, Metzger & Guazzelli (2006).
The set of equations (2.1) then become

ṙ∗
i =

5

8N0

∑
j �=i

1

r∗

(
I +

r∗ ⊗ r∗

r∗2

)
· eg. (2.3)

Here and in the following, the superscript ∗ denotes dimensionless quantities. In this
reference frame and with this normalization, the only variable parameter in the set
of equations (2.3) is the number of particles N0 as the sum term on the right-hand
side is purely geometric.

We should note that a short-range repulsive force as given in Nitsche & Batchelor
(1997) or a cutoff length as given in Machu et al. (2001) was not introduced to prevent
particles from overlapping. Indeed, these artificial expedients modify the dynamics
in an arbitrary way as shown by Ekiel-Jeżewska et al. (2006) and we chose to stay
with the simplest hydrodynamic approximation. However, in some simulation runs,
a pair of particles could happen to come very close and this proximity produced
an unrealistically large sedimentation velocity. These rare events became problematic
when the velocity of the pair exceeded that of the cloud, which was likely to occur
for clouds comprising a small number of particles. The rogue runs were eliminated
from the statistics.

Knowing the positions of the N0 particles at time t =0, the set of equations (2.3)
represent a closed system of 3N0 coupled ordinary differential equations which can
be solved numerically. A random number generator was used to distribute initially
the N0 particles inside a sphere of dimensionless radius, R∗(t∗ = 0) = R∗

0 ≡ 1. First,
the particles were placed randomly inside a cube (of dimensionless side 1) which
completely enclosed the sphere. Then, the corners of the cube lying outside the
enclosed sphere were removed by checking that particles were indeed inside the
sphere. The particles located outside the sphere were randomly re-sorted until they
lay inside. The subsequent positions of each particle were calculated using a multi-step
integration method and stored at chosen time intervals. We chose to use a variable-
order Adams–Bashforth–Moulton solver (ode113 in Matlab) which is considered
as being efficient at stringent tolerances. Few simulations were performed to test
the influence of an initial perturbation in shape (see § 7). Starting from a spherical
distribution, small perturbations were obtained by multiplying the z-components of
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all the particle positions by the desired factor (>1 for prolate perturbations and <1
for oblate perturbations).

As mentioned by Nitsche & Batchelor (1997), the system is chaotic as it is extremely
sensitive to initial configurations as well as to small errors in particle positions. A
small change in the initial positions of the particles strongly affects their individual
trajectories. We were able to characterize this sensitivity to initial conditions by
computing the Lyapunov exponents of the system, as developed in the Appendix. Since
any small unavoidable errors in the computed particle positions will be magnified with
time, it is impossible to track individual particle trajectories with perfect accuracy over
very long times. Thus, testing the numerical convergence on particle trajectories has
no meaning. Accuracy tests were therefore undertaken on macroscopic quantities such
as the velocity or the radius of the cloud (see Appendix). The relative error tolerance
and the absolute error tolerance were chosen to be 10−3 and 10−6, respectively.

Numerical simulations were undertaken with initial spherical clouds comprising
100 � N0 � 3500 particles which were tracked over a typical time interval 0 � t∗ � 1000.
As there are huge variations among runs starting from the same N0, several runs for
different realizations of the initial particle distributions were performed. This provides
an ensemble of data over which to average the macroscopic quantities of the cloud
such as the number of particles staying in the cloud N , the cloud velocity V , its
horizontal and vertical radii, R and r respectively, at each time t∗. The dispersion of
the data among runs is simply provided by the standard deviation.

For each run, the particles considered belonging to the cloud at time t∗ were those
for which the vertical position from the centre of mass of the cloud was � R0.
This yielded the number of particles inside the cloud N(t∗) and, by averaging the
individual velocities of these particles, the cloud velocity V (t∗). Several definitions
can be proposed for the cloud radii, we chose the following option which provides
quantities directly comparable to experiments. The vertical radius r(t∗) was defined
as the distance from the front leading particle to the centre of mass of the cloud. The
horizontal radius R(t∗) was defined as the average of the maximum distance from the
centre of mass over four quadrants in the horizontal plane. This averaging smoothed
somehow the possible asymmetries in the radial horizontal directions.

3. Experimental set-up
The experimental set-up is sketched in figure 1. The glass-walled vessel had inner

dimension 4 × 10 cm2 in horizontal cross-section with a filled height of 120 cm. The
suspension was prepared in a small glass container having curved walls; rotating the
container around its horizontal axis produced efficient mixing of the particles with
the fluid without introducing air bubbles. A glass-tube of inner diameter 3.5 mm,
mounted at the end of a borosilicated glass syringe, was then filled with the premixed
suspension. Clouds were produced by injecting the desired volume of suspension via
a specially designed device below the free surface of the vessel filled with quiescent
fluid. The injection device was similar to a medical syringe, but with a moving piston
forcing the suspension through the glass tube. The piston was pushed by a shaft,
which itself was driven by a stepping motor. As noticed by Machu et al. (2001), when
clouds are produced in a laboratory, external fluid is inevitably entrained inside the
cloud. However, we found that this could be overcome by carefully adjusting the
amplitude and the duration of the injection owing to a function generator which
actuates the stepping motor. Clouds which rapidly evolved into a spherical shape
without any entrainment of outer fluid were then successfully produced. We also
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Figure 1. Experimental set-up.

performed a few experiments to test the influence of the initial shape of the cloud by
varying the injection parameters. We were able to produce clouds having a prolate
shape, but failed to obtain oblate shapes.

The container was back-lit over its whole height with a single neon tube. The neon
was tuned to flash at 50 kHz to avoid any frequency match with the acquisition system.
A double layer of tracing paper applied to the back wall of the container diffused the
neon light and produced a homogeneous lighting over the width of the cell. Falling
clouds were recorded with a digital video-camera Canon XM2 mounted on a vertical
sliding rail. Owing to the extreme slowness of the cloud fall (see the values of the
Stokes time ts =R0/V0 in table 1), an acquisition rate of one frame per second was
sufficient. Each frame was thresholded and the cloud contour was fitted with an ellipse
under ImageJ (digital imaging software available at www.rsb.info.nih.gov/ij/). This
process provided the position of the centre of mass, the horizontal R and the vertical
r = R/γ dimensions of the cloud where γ denotes its horizontal-to-vertical aspect
ratio. The instantaneous cloud velocity was measured from two successive frames.

The viscosity of the liquid was chosen large enough to satisfy the conditions of
Stokes flow for the cloud (see the values of the cloud Reynolds number Re = ρV0R0/µ

in table 1). All the quantitative experiments were performed with the same liquid made
of a mixture of 50% (by volume) Ucon oil supplied by Chempoint and 50% distilled
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Number a φ R0 V0 N0 N0 ts
Set of runs (µm) (%) (mm) (mm s−1) from φ from V0 (s) Re

A 4 154 ± 10 4.0 ± 0.5 3.7 ± 0.1 1.7 ± 0.1 574 ± 95 518 ± 67 2.2 5×10−3

B 4 154 ± 10 20 ± 3 3.3 ± 0.1 5.9 ± 0.1 2070 ± 574 1600 ± 279 0.6 1×10−2

C 2 67 ± 10 20 ± 3 1.3 ± 0.1 0.7 ± 0.1 1450 ± 390 952 ± 257 1.8 7×10−4

Table 1. Experimental conditions.

(b)

3 mm

(a)

Figure 2. Snapshots of the falling cloud: (a) point-particle simulation with N0 = 3000 and
(b) experiment using the glass beads of set C in silicon oil.

water. This mixture had a density ρ = 1.030 ± 0.010 g cm−3 and a dynamic viscosity
µ =1170 ± 20 cP. We employed two different batches of spherical glass beads of
density ρp = 2.450 ± 0.050 g cm−3 having different radii (table 1). A few qualitative
visualization experiments were also performed in Silicon oil 47V1000 (1000 times
more viscous than water) with the spherical glass beads used in set C (see figure 2)
and with another batch of glass beads having a radius of 400 ± 50 µm (see movie 1,
available with the online version of the paper).

The initial number of particles N0 was estimated by two means: (i) from the known
volume fraction φ and the measured cloud radius R0 by using N0 = φ(R0/a)3 and (ii)
from the measured cloud initial velocity V0 and radius R0 by using N0 = 5πµR0V0/F

with F =4πa3(ρp − ρ)g/3. Note that the last formula comes from the equation for
the velocity of a spherical cloud of point particles (see § 2). The discrepancies between
the two calculations (see table 1) are mainly caused by the influence of the cell walls
and by the additional dissipation caused by the finite size of the particles which
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N0 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500 3000 3500

nt 15 15 15 15 15 15 15 15 15 15 10 10 10 5 5
nb 0 0 1 1 5 5 9 10 13 15 10 10 10 5 5

Table 2. Total number of numerical runs, nt , and number of runs for which the cloud
destabilizes into a torus with subsequent breakup events, nb , for a given number of particles N0.

for these volume fractions modifies the cloud effective viscosity. These two effects
tend to slow down the cloud sedimentation velocity and thus computing N0 from it
underestimates the number of particles inside the cloud. The large error in N0 arises
from propagation of uncertainties in the particle and fluid densities, cloud radius,
fluid viscosity and volume fraction. Note that the other error tolerances in table 1
come from experimental uncertainties.

Using the particles with the largest radius (sets A and B in table 1), we were able to
investigate the leakage mechanism as isolated particles that escaped the cloud could
be easily detected. Those particles were counted by eye, yielding to the time evolution
of the number N0 − N of particles that have leaked away from the cloud (see § 6).

A last remark concerns the observation of the torus disintegration and anticipate,
the remainder of the paper. To observe the destabilization described in § 4, the cloud
must sediment over approximately 600 times its radius and should also contains
enough particles (>1000). Only concentrated clouds with sufficiently small initial
radius such as those of set C in table 1 could satisfy these constraints, even in the tall
vessel used in the present experiments.

4. General evolution of the cloud
The time evolution of a falling spherical cloud presents two typical scenarios

depending upon the initial number of particles N0 observed in experiments and
simulations. The first scenario which is likely to be seen for clouds comprising a small
number of particles, typically N0 � 500, exhibits the following features: (i) the cloud
slowly but constantly loses particles at its rear and this produces a vertical tail of
particles emanating from the rear of the cloud; and (ii) the cloud remains roughly
spherical until it is so depopulated by leakage that it spreads and disintegrates. The
second scenario mostly encountered for N0 � 500 is illustrated in figure 2 as sequences
of snapshots of the falling cloud (see also online movies 1 and 2) and presents a
different sequence of events: (i) particles leak from the rear of the cloud and form a
vertical tail; (ii) the initial spherical cloud flattens into an oblate shape and eventually
forms a torus; and (iii) the torus breaks up into two (or very occasionally up to
four) droplets, each of which forms a torus which, if it contains enough particles,
again breaks up, and so on in a cascade. It is also a conspicuous feature of the
cloud that the particles circulate in a toroidal vortex which can be clearly seen in the
accompanying movies. In this paper, we are mostly interested in the second scenario.

The probability of a cloud destabilizing into a torus with subsequent breakup events
was examined numerically and is plotted versus N0 in figure 3 (see also table 2). For
small values of N0 (N0 � 500), the probability of the cloud breaking up is very low. As
N0 is increased, the probability experiences a sharp increase and reaches a value of 1
for N0 � 1000. This clearly indicates the existence of a destabilization transition for the
cloud. An important quantity which characterizes this transition is the time required
to reach the breakup. It can be estimated as the time for which the torus starts to
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Figure 3. (a) Destabilization probability nb/nt and (b) destabilization time t∗
b , measured for

the different simulation runs (filled diamonds) and for the two individual experimental runs of
set C (circle), versus N0.

bend to break up into secondary droplets. The dimensionless destabilization time t∗
d is

plotted versus N0 for all runs in figure 3. Although the probability of destabilization
increases with N0, the dimensionless time required for destabilization increases with
N0. It seems that there is a lower bound above which the cloud eventually destabilizes.
A less complete study was performed experimentally as the experiments are delicate
and tedious and it is difficult to obtain large statistics. However, destabilization times
obtained for the two individual runs of set C are of the same order of magnitude as
those predicted by the simulations.

5. First evolution toward a torus
As a general trend, the cloud evolves toward a torus. This is well represented by

the growth of the horizontal radius with time. Figure 4(a) shows the growth with
time of R∗ for four individual experimental runs and of the corresponding average
quantity over several numerical runs (see tables 1 and 2). For a small initial number
of particles (N0 = 500 in the simulations and N0 ≈ 500 in the experiments, i.e. set A
with φ = 4%), there is a considerable variation among runs, but the increase of the
radius is comparable in experiments and simulations. Conversely, for a larger number
of particles (N0 = 2000 in the simulations and N0 ≈ 2000 in the experiments, i.e. set
B with φ = 20%), the fluctuations are smaller and the experimental data present a
stronger increase than the simulations. This discrepancy occurs for an experimental
large volume fraction, a quantity meaningless in the point-particle simulations which
hold in the dilute regime. It should be noted that the observed oscillations in the
growth are related to the toroidal circulations of the particles. This feature is less
obvious in the simulation data as averaging has been performed over several runs.
The evolution toward a torus also induces a decrease of the cloud velocity with time
as the cloud loses particles and flattens. Figure 4(b) shows the decrease with time of
V ∗ for the same four experimental runs and of the corresponding average quantity
over the same numerical runs. Again the variations among runs are large, but there
is a qualitative agreement between experiments and simulations.
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Figure 4. (a) Horizontal radius R∗ and (b) cloud velocity V ∗ versus time t∗ for four individual
experimental runs and averaged over several numerical runs (solid curve), for N0 ≈ 500 (left)
and N0 ≈ 2000 (right). The dispersion of the numerical data (one standard deviation) is
indicated for the numerical curves.

As good statistics can be readily obtained in simulations, a full numerical study
was undertaken as a function of N0 to infer some scalings and tighten up on the
numerical coefficients. The expansion rate dR∗/dt∗ increases with decreasing N0 as
shown in figure 5(a). In logarithmic scales, the data are well fitted by a straight
line of slope −0.65 ± 0.01 (figure 5b), suggesting that R∗(t∗) − 1 scales as N

−2/3
0 t∗.

The cloud velocity V ∗ decreases with time owing to the decrease in the number of
particles N left inside the cloud. We have thus plotted V ∗ as a function of N∗ = N/N0

in figure 5(c). The solid line represents the data for a spherical cloud for which
V = NF/5πµR0. Clearly, the simulation results lie below this line, showing that the
flattening of the drop also contributes to the velocity decrease. The data for different
N0 separate slightly as a larger slope is observed for larger N0. By plotting V ∗ as a
function of N∗/R∗ in figure 5(d), the data collapse onto a single curve lying above
the solid line for the spherical cloud. The simulation provides the numerical law
V ∗ = (0.108 ± 0.007) + (0.908 ± 0.009)N∗/R∗.

6. Particle leakage from the cloud
As it settles, a cloud slowly loses particles by shedding them along a vertical tail

emanating from its rear. As can be seen in online movie 3, the leaking particles are
those located in the outer layer of the toroidal circulation. This depletes the region
near the vertical axis of the cloud and quickly leads to the torus formation. Figure 6
shows the percentage 1 − N∗ of particles that have leaked away from the cloud as a
function of time t∗ for the same experimental runs and the averaged quantity for the
same numerical runs as those of figure 4. Again, there is a large variation among runs,
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Figure 5. (a) Horizontal radius R∗ versus time t∗, (b) expansion rate dR∗/dt∗ versus N0,
(c) cloud velocity V ∗ versus percentage of particles N∗, and (d) cloud velocity V ∗ versus N∗/R∗,
for averages numerically obtained from clouds starting with different number of particles N0.

which decreases somewhat as the initial number of particles N0 increases. Clearly, the
rate of leakage dN∗/dt∗ decreases with increasing N0 and there is good agreement
between the experimental and numerical results.

Numerical simulations were again used to produce a more complete study and to
obtain scaling laws. Figure 7(a) confirms that the rate of leakage decreases as the
initial number N0 is increased. Plotting N

2/3
0 (1 − N∗) as a function of t∗ produces a

collapse of the data onto a master curve at long time and for sufficiently large N0.
Figure 7(b) in log–log scales indicates two different regimes with two different rates
of leakage. For t∗ � 10, the rate of leakage is large and increases with increasing N0.
For t∗ � 10 and large N0, we find 1 − N∗ = (0.52 ± 0.02)N−2/3

0 t∗(0.636 ± 0.004).
Nitsche & Batchelor (1997) gave a physical picture of the mechanism leading to

particle leakage from the cloud. The velocity fluctuations arising from hydrodynamic
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dispersion of the numerical data (one standard deviation) is indicated for the numerical curves.
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function of time t∗, and (b) N
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0 (1 − N∗) as a function of t∗ for averages numerically obtained

from clouds starting with different number of particles N0.

interactions cause particles to depart from the closed toroidal circulation. Some
particles may then cross the cloud boundary, be carried round the boundary, and
hence in the downstream tail. To quantify this effect, we have evaluated numerically
the departure to the closed Hadamard–Rybczyński toroidal circulation which can be
found e.g. in Ekiel-Jeżewska et al. (2006) for a spherical cloud. This departure D∗ was
evaluated by measuring the distance to the closed Hadamard–Rybczyński streamlines
and averaging it over all the particles and runs at each time t∗. This was performed
only for t∗ � 10 as the cloud maintains its spherical shape during this time interval.
This departure decreases as N0 increases (figure 8). This last finding gives an hint
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Figure 9. Evolution of the aspect ratio of individual clouds starting from different initial
shapes obtained from (a) numerical simulations with N0 = 3000, and (b) experiments using
particles of set C at a volume fraction of 10 ± 3%. �, spherical; �, oblate; � prolate.

about the decrease of the rate of leakage with increasing N0. In logarithmic scales, the
data are well fitted by a straight line of slope −0.34 ± 0.02, suggesting that dD∗/dt∗

scales as N
−1/3
0 .

7. Influence of initial shape on subsequent evolution
As mentioned in § 3, it is difficult to produce a perfectly spherical cloud in

experiments. In general, the injected cloud is slightly deformed. The objective of
this section is to investigate the influence of initial shape on the subsequent evolution
of the cloud. Figure 9 shows the time evolution of the horizontal-to-vertical aspect
ratio γ = R/r for individual experimental and numerical runs with N0 = 3000 and
starting from spherical, oblate and prolate shapes (oblate shapes were not successfully
produced in the experiment, § 3). After t∗ ≈ 10, the oblate (prolate) perturbation
relaxes toward the behaviour of the initially spherical cloud. The oblate (prolate)
curve presents large oscillations which become mostly damped at t∗ ≈ 100. The
observed oscillations are related to the coupling between the toroidal circulations
and the relaxation of the perturbation. The experimental data present a much larger
growth than the numerical predictions. The same dissimilarity was observed for the
growth in time of R∗ in § 5.
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Figure 10. Successive cloud profiles for the same numerical runs as those of figure 9(a). The
positions of the point particles have been integrated over the whole range of the azimuthal
angle in order to visualize the cloud profiles. The initial geometry of the cloud was either
(a) spherical, (b) oblate, or (c) prolate.

Figure 10 presents the successive cloud profiles for the same numerical runs as those
of figure 9. In order to visualize the cloud shape, the profiles have been obtained by
integrating the positions of the point particles over the whole range of the azimuthal
angle. For the initially spherical shape, the cloud remains spherical at short times and
loses particles at its rear. A deficit of particles progressively occurs near the axis of
symmetry. At long times, the cloud flattens and reduces into a torus. For the initially
oblate shape, a dimple develops at the rear of the cloud while the front recovers the
unperturbed spherical shape. Then, clear fluid is entrained into the cloud along the
axis of symmetry and a coaxial tail of particles extends at the rear of the cloud. At
long times, the cloud again reduces to a torus. For the initially prolate shape, the rear
extends into a thin tail along the axis of symmetry while the front again recovers the
undisturbed spherical shape. Then ambient fluid is entrained into the cloud near the
base of the tail and produces a small dimple around the tail. At long times, a torus is
recovered. The same trend is found in the experiments for the initially spherical and
prolate clouds, respectively, as can be seen in figure 11.

8. Breakup of the torus
In the previous sections, the data were analysed up to destabilization. The aim of

this section is to provide a physical mechanism for the breakup of the torus. Figure 12
illustrates successive flow fields computed in a vertical plane passing through the
vertical axis of symmetry and in the instantaneous reference frame of the cloud,
i.e. moving with V , by summing the velocity disturbances (Stokeslets) of all the
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Figure 11. Photographs of the clouds for the same experimental runs as those of figure 9(b):
(a) nearly spherical and (b) prolate shapes.
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Figure 12. Flow and pressure fields computed at successive times in the vertical plane through
the vertical axis of symmetry and in the instantaneous reference frame of the cloud. The
displayed particles are those located at ±0.1R0 from the vertical plane. High (low) pressure is
indicated in dark (white).
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Figure 13. (a) Computed (V c − V )/V versus γ produced by point particles randomly
distributed in a torus having a circular section, and (b) aspect ratio γ versus time for a single
experimental run of set C (open triangle) having N0 ≈ 1500 and for averages numerically
obtained from clouds starting with two different numbers of particles N0 (solid and broken
curves).

particles. By summing the pressure disturbances, we also obtain the pressure field
which is represented in grey scale on top of the streamlines. The particles which
are plotted in figure 12 are those located at ± 0.1R0 from the plane. At t∗ = 0, the
particles are randomly distributed inside a sphere of radius R0. The region of closed
Hadamard–Rybczyński streamlines is bounded by the cloud boundary whereas the
external streamlines go round it as the high-pressure region is located at the front of
the cloud. When the cloud has evolved into a torus shape, at t∗ =300, a deficit of
particles is observed near the vertical axis, but the high-pressure region at the front
prevents the streamlines from running through the cloud. Just before destabilization,
at t∗ = 600, the torus has considerably expanded and the high-pressure region forms a
ring at the front. Near the front, the pressure close to the vertical axis decreases and
eventually lets the streamlines poke through the cloud. At the same time, the torus
bends and forms two droplets (having features similar to the initial cloud) which are
pulled apart, see figure 12 at t∗ = 660. Note that the streamlines which pass through
the cloud have an opposite direction to those of the initial toroidal circulation
and thus lead to the formation of new recirculation regions precursory droplet
formation.

The question is now whether there is a criterion for destabilization. In order to
obtain some physical insight, we have performed a numerical computation of the
vertical velocity Vc produced at the centre of a torus having a circular section and
comprising N0 point particles randomly distributed inside its volume. Figure 13(a)
indicates that the vertical velocity Vc is smaller than the mean velocity of the torus
V when the aspect ratio of the torus γ � γc = 1.64 ± 0.05. Therefore, for γ � γc, the
streamlines pass through the hole in the centre of the torus. The results of the
dynamical simulations displayed in figure 13(b) present the growth in time of γ

until breakup. Clearly, destabilization occurs for approximately the same aspect ratio,
γc ≈ 1.64, for different N0( = 1500 and 3000). This suggests that the breakup is due to
the change in flow configuration created by the point particles when the aspect ratio
reaches this critical value. Conversely, the experimental data for N0 ≈ 1500 present
a stronger increase of γ and the breakup occurs for a larger aspect ratio, γc ≈ 2.4.
This disparity is probably due to excluded volume effects (finite size of the particles)
which are outside the validity range of the point particle simulations. Note that the



298 B. Metzger, M. Nicolas and É. Guazzelli

experiments seem to be very reproducible at that volume fraction. The data from a
single experimental run are displayed in figure 13(a) but the data collected from a
second run lie on top of these and the breakup happens at the same γc ≈ 2.4.

9. Discussions and conclusions
By performing experimental investigations as well as numerical simulations, we

have examined the nature of the breakup of a cloud of particles falling in a viscous
fluid at creeping flow conditions. The major finding is that an initially spherical cloud
is unstable and evolves into a torus which breaks up into two (or very occasionally
more) droplets in a repeating cascade. This destabilization of the spherical cloud is
a slow process and is likely to happen for a large number of particles. Observation
of such a phenomenon requests thus very long simulation or experimental runs with
a sufficient number of particles. We can speculate that this is the reason why it has
previously escaped detection and consequently why earlier studies have concluded
that an initially spherical cloud would remain roughly spherical as it falls at low
Reynolds numbers. Nitsche & Batchelor (1997) performed simulations of clouds
containing a small number of particles, N0 = 80, 160 and 320, over a typical time
interval 0 � t∗ � 120. Machu et al. (2001) and Bosse et al. (2005) investigated clouds
with a larger number of particles, but did track them for short time intervals.

We have characterized this systematic evolution toward a torus by measuring the
evolution in time of the horizontal radius and the velocity of the cloud. We found
that the horizontal radius increases in time. The expansion is of the same order of
magnitude in the simulations and in the experiments with dilute clouds; but clouds
expand faster in experiments at larger volume fractions. This feature cannot be
captured by the point-particle simulations which cannot account for excluded volume
effects. A full numerical study suggests that the expansion is linear in dimensionless
time t∗ = tV0/R0 and proportional to N

−2/3
0 . The cloud velocity was found to decrease

in time owing to the loss of particles as well as to the shape evolution. Indeed,
the drag force of a torus is larger than that of a sphere. The agreement between
experiments and simulations is good. Combining the two effects mentioned above, a
universal scaling can be proposed for the cloud velocity: V/V0 ∝ NR0/N0R.

The evolution toward a torus shape and the subsequent destabilization is a robust
feature. Perturbations to the initial shape, such as an oblate or a prolate shape,
eventually relax toward the evolution of the initially spherical cloud. At long times,
the torus shape is systematically recovered. However, the short-time evolution differs
and resembles, respectively, that of an oblate or a prolate drop of heavy fluid settling
in a miscible fluid (see Pozrikidis 1989). We have also checked that this evolution
toward a torus was not caused or influenced by the flow perturbation created by the
vertical tail emanating from the rear of the cloud. This was done by performing a
numerical simulation where the interactions with the tail were turned off.

We measured the percentage of particles that have escaped the cloud as a function
of time and found good agreement between experiments and simulations. We found
two regimes with two different rates of leakage. At short time, when the cloud has
a shape close to that of a sphere, the rate of leakage is large. At larger time, when
the cloud has evolved toward a toroidal shape, the loss slows down and we found
an approximate scaling N − N0 ∝ N

1/3
0 t∗2/3 for large N0. Nitsche & Batchelor (1997)

proposed that the leakage rate −dN/dt ∝ V/d considering that the rate determining
factor is the cloud velocity V and that the relevant length scale is the interparticle
distance d =(4π/3N)1/3R. This length scale is pertinent in describing the chaotic
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displacements of the particles which may lead to escapes from the cloud internal
circulation. In their simulations with a small number of particles and at short times,
the cloud remains approximately spherical and they found N − N0 ∝ N

1/3
0 t∗. We

recovered this result in the short-time regime, but did not find a linear increase in
t∗ in the long-time regime. This is probably due to the evolution of the cloud into a
torus shape.

We have described the breakup of the expanded torus. Destabilization was found
to occur for a critical horizontal to vertical aspect ratio in the simulations. It is due
to the change in flow configuration created by the point particles when the aspect
ratio reaches this value. A larger critical value was found in the experiments. This is
again probably due to excluded volume effects not accounted for in the simulations.

In conclusion, we have found both numerically and experimentally that an initially
spherical cloud containing enough particles is unstable. Owing to the fluctuations
of their trajectories, some particles escape from the cloud and form a vertical tail.
Because the leaking particles are those which are located in the outer layer (typically
of thickness comparable to the mean interparticle spacing) of the toroidal circulation,
this creates a particle deficit near the vertical axis and therefore the cloud evolves
into a torus. Then the torus expands. Note that the mechanism of this expansion
is still unclear. We verified that it is not related to inertial effects or to interactions
with particles which have escaped in the vertical tail. The rate of particle leakage
is influenced by the shape evolution of the cloud. When the torus reaches a critical
aspect ratio, the topology of the flow changes and the torus breaks up into droplets
which may follow the same evolution. It is worth noting that a simple numerical
simulation using point particles in Stokes flow captures the evolution of the cloud
extremely well. The agreement is quantitative in the dilute regime, but not at large
volume fractions as excluded volume effects are not accounted for in the model.

We would like to thank J. E. Butler for help in the numerical computation,
M. L. Ekiel-Jeżewska for suggesting the scaling of the cloud velocity and the choice
of the reference frame moving with an isolated particle in order to obtain the
number of particles as the only variable parameter, E. J. Hinch and G. M. Homsy
for discussions regarding the chaotic dynamics of the particles, and S. Martinez for
technical assistance. B. Metzger benefited from a fellowship from the French Ministère
de la Recherche.

Appendix. Chaotic nature of the particle motion and accuracy test
Long-range hydrodynamic interactions lead to a complex chaotic dynamics as soon

as more than two particles come into play, see e.g. Jánosi et al. (1997). In these
circumstances, it is important to assess that the observed outcome of the system is
due to a physical mechanism and not to a numerical artefact. In this Appendix,
we first show that the system is chaotic and evaluate an average of the Lyapunov
exponent. Then, we demonstrate that the numerical accuracy used to perform the
computations presented in this paper is sufficient to obtain a reliable estimate of the
macroscopic properties of the cloud.

Two simulations with two slightly different initial configurations A and B were
performed for a cloud of N = 3000 particles. Configuration B was prepared from
configuration A by displacing each particle in a random direction with a magnitude
of ε =10−8. At each time step, the Euclidian distance between these two configurations
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Figure 14. (a) Evolution of the distance � between the unperturbed and the perturbed clouds
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The same numerical precision has been used in both configurations. As shown
in figure 14(a), � grows extremely fast when the accuracy is poor. With better
accuracies, � follows an exponential trend �(t∗) ∝ exp(λt∗). The divergence rate λ can
be related to the Lyapunov exponent. We found a value λ= 0.360 ± 0.001 independent
of the numerical precision. A positive value of λ is a clear indication of a chaotic
system. Similarly, but for only three particles, Jánosi et al. (1997) found λ= 0.04. A
consequence of this chaotic behaviour is that individual particle trajectories depend
strongly on the initial conditions. In order to know the particle positions with a
precision δ at time t∗, a numerical accuracy of the order of δ exp(−λt∗) is required.
With δ =1% at t∗ = 100, the requested accuracy would be 10−18. However, possible
random errors on the individual particle trajectories resulting from using less stringent
accuracy are unlikely to invalidate the computed macroscopic properties of the cloud
as shown in the following.

The numerical convergence was tested by computing the evolution of a cloud
with N = 3000 particles, using two different numerical relative tolerances: 10−3

and 10−2 which we refer to as rt3 and rt2. For each tolerance, five runs were
performed and, in each case, the mean sedimentation velocity Vrt2 and Vrt3 and the
error in the mean |σrt2/

√
5| and |σrt3/

√
5| were computed. We tested the numerical

convergence comparing the difference Vrt2 − Vrt3 to the respective errors bars |σrt2/
√

5|
and −|σrt3/

√
5|. Figure 14(b) shows that the difference in the average Vrt2 − Vrt3 lies

below both error bars. For all the numerical data presented in this paper, a numerical
accuracy corresponding to rt3 = 10−3 was used to perform integration.
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